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Abstract—Unprocessed RAW data is a highly valuable image format for image editing and computer vision. However, since the file
size of RAW data is huge, most users can only get access to processed and compressed sRGB images. To bridge this gap, we design
an Invertible Image Signal Processing (InvISP) pipeline, which not only enables rendering visually appealing sRGB images but also
allows recovering nearly perfect RAW data. Due to our framework’s inherent reversibility, we can reconstruct realistic RAW data instead
of synthesizing RAW data from sRGB images without any memory overhead. We also integrate a differentiable JPEG compression
simulator that empowers our framework to reconstruct RAW data from JPEG images. Extensive quantitative and qualitative
experiments on two DSLR cameras demonstrate that our method obtains much higher quality in both rendered sRGB images and
reconstructed RAW data than alternative methods. We further extend our invertible ISP to videos where we show our proposed video
normalizing flow method and video compression simulator can achieve desirable balance among RGB video rendering, RAW video
reconstruction, and temporal consistency. We collect a raw video dataset and evaluate our InvISP with different designs under different
video compression settings. Our source codes are publicly available at https://github.com/yzxing87/Invertible-ISP.

Index Terms—Image Signal Processing, Invertible Neural Networks, Raw Image Reconstruction
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1 INTRODUCTION

P ROFESSIONAL photographers can choose to process
RAW images by themselves instead of RGB images

to produce images with better visual effects as the RAW
data captures unprocessed scene irradiance at each in 12-
14 bits by a camera. Due to its linear relationship with
scene irradiance, raw sensor data is also a better choice
than RGB images for many image editing and computer
vision tasks, such as photometric stereo, intrinsic image
decomposition, image denoising, reflection removal, and
image super resolution [4], [9], [22], [35], [39], [50], [51], [63].
However, accessing RAW images can be quite hard due to
their memory-demanding property: RAW images may be
discarded during the process of data storing, transferring,
and sharing. In this paper, we are interested in the question:
can users get access to the real RAW data without explicitly
storing it?

Due to the great advantages of RAW images, there
have been many approaches to provide the mapping from
sRGB images to their RAW counterparts [2], [9], [37], [40],
[46], [61]. Nguyen et al. [40] suggest explicitly storing the
parameters of sRGB-RAW mapping functions into the JPEG
metadata for the prospective RAW reconstruction. Brooks et
al. [9] use the prior information of the cameras (e.g., color
correction matrices and digital gains) to reverse the ISP step-
by-step. Another line of work [37], [46], [61] follows the
inverse order of ISP and proposes learning-based methods
to synthesize RAW data from sRGB images. However, these
methods still rely on the underlying lossy in-camera ISP
pipeline, and the recovered RAW images are inaccurate and
may be different from the original ones.

In this work, we propose a novel and effective learned
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solution by redesigning the camera image signal processing
pipeline as an invertible one, which can be aptly called
invertible ISP (InvISP). Our learning-based InvISP enables
rendering visually appealing RGB images in the forward
process, and recovering nearly perfect quality raw sensor
data from compressed RGB images through the inverse
process. Our reconstructed RAW data is nearly identical
with real RAW data and enables computer vision applica-
tions, such as image retouching and HDR reconstruction, as
shown in Figure 1.

Designing an invertible ISP is not a trivial task for at least
three reasons. First, some steps in the traditional ISP, such
as denoising, tone mapping, and quantization, can lead to
inevitable information lost from wide-range (12-bit or 14-bit)
raw sensor data to 8-bit RGB images. Second, the invertible
ISP should not produce visual artifacts such as halo and
ghosting artifacts [24]. To render visually appealing sRGB
images, denoising, demosaicing, color correction, white bal-
ance gain, tone mapping, and color enhancement must be
designed carefully in ISP. Third, modern digital cameras
store RGB images in the JPEG format, where the lossy com-
pression process makes reconstructing high-quality RAW
data highly challenging.

To overcome these challenges, we take advantage of
the inherent reversibility of normalizing-flow-based mod-
els [16], [33] and design both the RAW-to-RGB and RGB-
to-RAW mapping in our invertible ISP with one single
invertible neural network. We deeply analyze the properties
of traditional ISP and design specific modules that can not
only well approximate the camera ISP but also reconstruct
almost identical RAW data with the camera RAW data.
Specifically, we design our model with the composition of a
stack of affine coupling layers and utilize the invertible 1 × 1
convolution as the learnable permutation function between
the coupling layers. Besides, to empower our model to
recover realistic RAW data from JPEG images, we integrate
a differentiable JPEG simulator into our invertible neural
network. We leverage the idea from Fourier transforma-

https://github.com/yzxing87/Invertible-ISP
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Fig. 1. Our ISP model can not only render visually pleasing RGB images but also recover RAW images that are nearly the same as the original RAW
data. The recovered RAW data are valuable for photographers and benefit a number of computer vision tasks such as HDR reconstruction [42],
image retouching [29], and RAW compression. Here, the RAW images are visualized with bilinear demosaicing.

tion to replace the non-differentiable quantization step in
JPEG compression. Thus, our end-to-end InvISP framework
bypasses traditional ISP modules and minimizes the infor-
mation loss for the RAW data and RGB image conversion.
We bidirectionally train our network to optimize the RGB
and RAW reconstruction process jointly. We experimentally
prove that our framework can recover much better RAW
data than state-of-the-art baselines without sacrificing the
RGB reconstruction performance.

In comparison to the conference version of this
work [59], we present an extra technical contribution to
RAW video reconstruction. We extend our invertible ISP
to videos, where our method can achieve both high-quality
RGB video rendering and RAW video reconstruction. Since
there is no existing public RAW video dataset, we first
collect a high-quality RAW video dataset with Sony RX
100M VI camera. Our RAW video dataset consists of 180
sequences of RAW videos that cover a diverse set of scenes.
We preprocess the RAW videos through LibRAW to obtain
high-quality RGB videos. Second, we propose a novel nor-
malizing flow framework to enable invertible video pro-
cessing. Our method can provide both leverage multiple
frame information and preserve great level of temporal
consistency. Third, we also integrate an effective video codec
simulation module to handle the information loss during the
video compression process. Our compression simulator can
simulate both the H.264/AVC [55] and H.265/HEVC [52]
video codecs. Moreover, we provide extensive ablation stud-
ies to analyze the key modules of our proposed invertible
ISP framework, which provide valuable insights for further

research.

Our contributions can be summarized as:

• We make the first attempt for RAW data reconstruc-
tion from the perspective of redesigning the camera
ISP as an invertible one.

• We firstly introduce the normalizing flow into ISP
modeling to enable both high quality RGB rendering
and RAW reconstruction. Our method can address
the information loss issue in ISP modules and is
robust to the JPEG compression step. We demon-
strate the effectiveness of our method on two DSLR
cameras and show that our method outperforms
state-of-the-art baselines to a large extent.

• We provide a detailed analysis of our invertible ISP
key designs, including the influence of invertible
block numbers, JPEG qualities, and loss functions.

• We extend our invertible ISP to videos where
our proposed video normalizing flow method can
achieve desirable balance among RGB video render-
ing, RAW video reconstruction, and temporal con-
sistency. Our invertible framework is robust to the
information lost due to video compression in digital
cameras. To our best knowledge, we propose the first
framework for accurate RAW video reconstruction
from compressed video files.

• We exhibit three potential applications of our
method, including RAW data compression, image
retouching, and HDR reconstruction.



3

2 RELATED WORK

2.1 RAW Image Reconstruction
Recovering RAW from sRGB images has been well-
studied [2], [9], [37], [39], [40], [46], [61]. Nguyen et al. [40]
encode the parameters in ISP into JPEG metadata with 64KB
overhead and use them to reconstruct RAW from JPEG
images. Brooks et al. [9] propose to invert the ISP pipeline
step by step with camera priors. CIE-XYZ Net [2] proposes
to recover RAW from sRGB images to the camera inde-
pendent CIE-XYZ space. CycleISP [61] proposes to model
the RGB-RAW-RGB data conversion cycle for synthesizing
RAW from sRGB images. Unlike previous methods, we aim
to fundamentally solve the RAW reconstruction problem by
re-designing the camera ISP into an invertible one.

2.2 Image Signal Processing (ISP)
Image signal processing pipeline (ISP) aims at converting
raw sensor data to human-readable RGB images [12], [13],
[14], [22], [26], [34], [36], [50], [60], [63]. Heide et al. [26]
merge the steps in the traditional ISP pipeline to avoid the
accumulative error. Gharbi et al. [22] propose a method
with end-to-end networks to learn RAW demosaicing and
denoising jointly. Hasinoff et al. [25] propose a low-light
imaging system for mobile devices. Other works [13], [50]
focus on learning low-light enhancement ISP pipelines with
CNNs. Zhang et al. [63] process RAW for super-resolution
task with U-net [49] to preserve high-frequency information.
CameraNET [36] splits the ISP into two learning stages for
CNN. Unlike the encoder-decoder style network adopted
in previous work, we demonstrate that invertible neural
networks own great potential for ISP pipeline and enable
accurate RAW reconstruction.

The ISP on videos concerns about the conversion process
of raw data on videos [10], [38], [41], [53]. Buades et al. [10]
present the joint demosaicking and denoising algorithm for
raw video sequences with a spatio-temporal patch method.
Tassano et al. [53] introduce a FastDVDnet based video
denoising algorithm to achieve fast runtimes and the ability
to handle different noise levels. Paliwal et al. [41] focus on
denoising low-light raw videos in multiple stages with the
adversarial loss and gradient mask. Maggioni et al. [38]
propose a new multi-stage video denoising algorithm to
reduce the computational complexity and memory require-
ments with recurrent spatio-temporal fusion.

2.3 Invertible Neural Networks
Normalizing flow-based invertible neural networks [15],
[16], [27], [33] have become a popular choice in image
generation tasks. Normalizing flow transforms a simple
posterior distribution to a complex real-world distribution
through a series of invertible transformations. NICE [15] is
the first learning-based normalizing flow framework with
the proposed additive coupling layers. RealNVP [16] mod-
ifies the additive coupling layer to both multiplication and
addition, and composes the coupling layer in an alternating
pattern such that all the inputs can be altered with equal
chance. Kingma et al. [33] propose ActNorm layer and
generalize channel-shuffle operations with invertible 1 × 1
convolution. Flow++ [27] modifies the affine coupling layer
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Fig. 2. Some popular tone mapping curves used in games and industries
[7], [47]. Although the tone mapping function itself is lossless, the follow-
ing quantization causes a great loss of information in over-exposed and
under-exposed pixels. For instance, in a 14-bit linear RAW image, the
pixel intensity lies in [16313, 16383] will all be quantized to the maximum
pixel intensity 255 of an 8-bit RGB image.

to logistics mixture CDF coupling flows and applies self-
attention module.

2.4 Video Compression Codecs

Video codecs compress or decompress digital videos for
better transmitting or recording [5], [6], [19], [21], [48],
[56]. Bestagini et al. [5], [6] aim at identifying coding-
based footprints of codecs in double compressed videos to
recover the compression history. Wu et al. [56] focus on
repeated deep image interpolation and generation in the
video compression process and raise an end-to-end codec
based on deep learning methods. Rippel et al. [48] proposes
a relatively new video codec algorithm with a novel video
compression architecture and spatial rate control framework
based on machine learning. Esakki et al. [19] raise a VMAF-
driven adaptive video encoding method for a large field
of video codecs to maximize the quality of videos with
comprehensive performance evaluation and subjective eval-
uations.

3 TRADITIONAL ISP ANALYSIS

Modern digital cameras apply a series of operations, which
form the image signal processing pipeline (ISP), to render
RAW data to human-readable RGB images. These opera-
tions include white balance, demosaicing, denoising, color
space transformation, tone mapping, and others [31]. Tradi-
tionally, every step of an ISP needs labor-intensive tuning
for specific cameras, and inverting the traditional ISP steps
is quite challenging. In this section, we analyze the existing
modules with information loss in the traditional ISP. We
show that the lossy steps in traditional ISP restrict the RAW
reconstruction performance of a series of works [9], [40], [61]
that aim at synthesizing RAW from sRGB images. Different
from previous works, we re-design the ISP into an end-to-
end invertible one that can bypass the traditional modules to
minimize information loss during the RAW data and JPEG
image (or MP4 video) conversion, which further enables
recovering high-quality RAW data.
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3.1 Quantization and tone mapping

Some ISP steps like demosaicing and gamma compression
may involve float-point operations, and thus quantization
is inevitable to transform the data into the integer type.
For instance, the rounding function can bring (−0.5, 0.5)
intensity error to a pixel in theory. In the context of ISP,
however, the tone mapping step can enlarge the intensity
error much greater than ±0.5. The tone mapping curve
is usually designed as S-curve that compresses the high-
intensity value and low-intensity value more than mid-
intensity values [7], [47]. As illustrated in Figure 2, for a 14-
bit raw image, gamma compression makes pixel intensity
at [16313, 16383] all be rounded to the max intensity 255
after normalized to (0, 255). This step may cause a 0.004
RMSE error at this single pixel. Thus, it is challenging for
existing works [9], [40], [61] to directly synthesize the 14-
bit RAW data from its 8-bit sRGB counterparts, especially
at the over-exposed regions. We show the comparison of
our recovered RAW with previous works in Figure 6. Our
method can preserve much more detail of RAW data, even
at high-intensity pixels.

3.2 Out-of-range value clipping

Value clipping is a common step to normalize the raw
value within a reasonable range, which may happen after
color space transformation, demosaicing, denoising, and
tone mapping [1], [18], [20], [44]. Most commonly used
value clipping operation is like min(max(x, 0), 1), which
will discard the out-of-range pixels at over- and under-
exposed regions. Note that this restricts the image capac-
ity for further adjustment. Moreover, traditional ISPs are
manually tuned in isolation by experts, which accumulates
the clip error among ISP steps to bring further information
lost. Our end-to-end pipeline jointly optimizes all the ISP
steps and alleviates the clip error accumulation problem to
recover more realistic RAW images.

3.3 JPEG compression and video compression

Modern digital cameras store RGB images in JPEG format,
whose information loss further brings challenges to RAW
image reconstruction. JPEG encoding pipeline consists of
four main steps: color space transformation, discrete cosine
transformation (DCT), quantization, and entropy encod-
ing [43]. In reality, quantization is the only lossy and non-
differentiable step in JPEG compression. Note that the JPEG
information loss is quite hard to reverse. Thus we take
a compromised step by integrating the JPEG compression
procedure into our network optimization process to alle-
viate the information loss. To achieve this, we design a
differentiable JPEG simulator by carefully simulating the
JPEG compression procedure and replacing the quantization
step with differentiable Fourier transformations.

Similarly, due to the great storage and bandwidth
usage, videos are usually stored in compressed format.
H.264/AVC [55] and H.265/HEVC [52] are the two most
commonly used video compression methods. The informa-
tion loss of these algorithms also brings challenges to RAW
video reconstruction. H.264/AVC and H.265/HEVC share a
similar compression pipeline, which mainly includes: I, P, B

frame selection, macroblock dividing, inter-frame prediction
(motion prediction and motion compensation), intra-frame
prediction, discrete cosine transformation (DCT), quantiza-
tion, and entropy encoding. Similar to JPEG compression,
quantization is the only step that involves the informa-
tion loss in H.264/AVC and H.265/HEVC. Since the full
H.264/AVC and H.265/HEVC algorithms are hard to fully
reproduce in our learning-based framework, we design
an algorithm to simulate the key step in H.264/AVC and
H.265/HEVC. Specifically, we propose a quality-aware com-
pression simulation module to simulate the inter-frame pre-
diction, intra-frame prediction, transformation, and quanti-
zation. By utilizing the CNS module, our method is able to
adapt to the information loss by itself.

4 METHOD

4.1 Invertible Image Signal Processing (InvISP)
We denote the RAW data space as X and sRGB data space
as Y . Our goal is to find the invertible and bijective function
which can map the data point from RAW data space to
sRGB data space, denoted as f : X → Y . To achieve this,
classical neural networks need two separate networks to
approximate X → Y and Y → X mappings respectively,
which leads to inaccurate bijective mapping and may ac-
cumulate the error of one mapping into the other. We take
an alternative method and use the affine coupling layers
in [16], [33] to enable invertibility of one single network. We
design our invertible ISP with the compostition of a stack
of invertible and tractable bijective functions {fi}ki=0, i.e.,
f = f0 ◦ f1 ◦ f2 ◦ · · · ◦ fk. For a given observed data sample
x, we can derive the transformation to target data sample y
through

y = f0 ◦ f1 ◦ f2 ◦ · · · ◦ fk(x), (1)

x = f−1
k ◦ f−1

k−1 ◦ · · · ◦ f
−1
0 (y). (2)

The bijective model fi is implemented through affine
coupling layers. In each affine coupling layer, given a D
dimensional input m and d < D, the output n is calculated
as

n1:d = m1:d, (3)
nd+1:D = md+1:D ⊙ exp (s (m1:d)) + t (m1:d) , (4)

where s and t represent scale and translation functions from
Rd 7→ RD−d, and ⊙ is the Hadamard product. Note that the
scale and translation functions are not necessarily invertible,
and thus we realize them by neural networks.

As stated in [16], the coupling layer leaves some input
channels unchanged, which greatly restricts the represen-
tation learning power of this architecture. To alleviate this
problem, we firstly enhance [58] the coupling layer (3) by

n1:d = m1:d + r(md+1:D), (5)

where r can be arbitrary function from RD−d 7→ Rd. The
inverse step is easily obtained by

md+1:D = (nd+1:D − t (n1:d))⊙ exp (−s (n1:d)) , (6)
m1:d = n1:d − r(md+1:D). (7)

Next, we utilize the invertible 1 × 1 convolution pro-
posed in [33] as the learnable permutation function to
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Fig. 3. Our invertible ISP (InvISP) framework. InvISP is composed of both forward and inverse passes. In the forward pass, the Bayer RAW is first
bilinearly demosaiced and then transformed to an RGB image by a stack of bijective functions {fi}ki=0. Our model integrates a differentiable JPEG
simulator to account for compression information lost. During the training time, to invert the ISP, the backward pass takes a compressed RGB image
as input and reverses all the bijective functions and the bilinear demosaicing to obtain the original RAW image. Note that the backward pass takes
real JPEG images as input at test time. We illustrate the details of the invertible block on the right. r, s, and t are transformations defined in the
bijective functions {fi}ki=0.

reverse the order of channels for the next affine coupling
layer.

We remove the spatial checkerboard mask as it brings
no evident performance improvement [33]. We follow the
implementation of [13] and disable batch normalization [30]
and weight normalization used in [16]. For our image-to-
image translation task, we directly learn the RAW-to-RGB
mapping without explicitly modeling the latent distribution
to stabilize the training process.

Note that the input size of invertible neural networks
must be identical to the output size. Thus, we take the
bilinear demosaiced RAW data as input, which will not
destroy the RAW data quality, and reversing the bilinear
demosaicing is trivial [9]. For the affine coupling layer,
we split the input into two parts. We note that although
three-channel input cannot be split evenly, the invertible
1 × 1 convolution ensures that unchanged components
are updated in the next invertible block. Thus R, G, and
B channels are still treated equally. We also do an online
gamma correction (i.e., without storing on disk) to RAW
data to compress the dynamic range for faster convergence
speed.

The forward pass of our InvISP produces the sRGB
images, and the reverse pass aims at recovering realistic
RAW data. We conduct bi-directional training with L1 loss
to optimize our framework:

L = ||f(x)− y||1 + λ||f−1(y)− x||1, (8)

where λ is the hyper-parameter used to balance the accuracy
between RGB and RAW reconstruction. We set λ to 1 in our
main experiments.

4.2 Invertible ISP on Videos
Compared with invertible ISP on images, invertible ISP on
videos is more challenging since accurate RAW reconstruc-
tion and RGB rendering become harder and the network

needs to maintain the temporal consistency at the same time.
Single-image normalizing flow network performs unsatis-
factory balance between the two goals since it ignores the
temporal information which is vital for video reconstruc-
tion.

In this work, we propose a novel normalizing flow
pipeline for invertible RAW video reconstruction and RGB
video rendering. Specifically, instead of taking one frame
each time as input for rendering and reconstruction, we
feed W consecutive RAW frames to the forward process
and W consecutive RGB frames to the inverse process, as
shown in Figure. 4. We use this sliding-window scheme to
encourage the network learn temporal information from the
consecutive frames. Please note that in our design, we only
aim at optimizing the center RGB and RAW frames within
the sliding window. Thus, during training, we only optimize
the loss on the center RGB and RAW frames and replace
the other frames with ground-truth frames for computation.
During inference, we use the reconstructed frames to act
as the ground-truth frames. We utilize the bi-directional
supervision to train the network:

Lvideo =

T∑
t=1

||f(xt)− yt||1 + λ||f−1(yt)− xt||1. (9)

4.3 Quality-aware Compression Simulator
4.3.1 JPEG compression
Our goal is to train a robust invertible ISP that can tolerate
the distortion by JPEG compression to recover accurate
RAW. However, the JPEG compression algorithm is not
differentiable, which can not be directly integrated into our
end-to-end framework. Thus, we propose a differentiable
JPEG simulator to enable our network robust to the JPEG
compression through the optimization process. Since en-
tropy encoding is lossless and goes after quantization, we
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Fig. 5. The curve of our approximation rounding function for quantization
in our differentiable JPEG simulator.

skip this step and only simulate color space transformation,
DCT, and quantization steps.

To simulate the DCT process, we compute the DCT
coefficients and split the input into 8 × 8 blocks. Then each
block is multiplied by DCT coefficients to get the DCT
map. In JPEG compression, the DCT map is divided by
quantization tables and rounding to the integer type. Since
the rounding function is not differentiable, we design a
differentiable rounding function base on the Fourier series,

which can be defined as

Q(I) = I − 1

π

K∑
k=1

(−1)k+1

k
sin(2πkI), (10)

where I is the input map after divided by quantization ta-
bles in JPEG compression, and K is used for the tradeoff be-
tween approximation accuracy and computation efficiency.
As K increases, the simulation function is closer to the real
round function, but the running time will also increase. We
empirically set K to 10. The rounding process is illustrated
in Figure 5.

In the decoding phase of JPEG compression, I is multi-
plied by the quantization table. The inverse DCT and color
space transformation are then applied to reconstruct the
simulated JPEG images.

Discussion Differentiable rounding function is widely
used in network quantization research. To fairly prove the
effectiveness of our proposed rounding function, we also
compare with the rounding function in [23], as shown in
Table 1. Our method can achieve a better balance between
RGB rendering and RAW reconstruction.

4.3.2 Simulator for H.264 and H.265 compression
Most modern digital cameras store captured RGB videos
in a compressed format, which is usually streamed
with lossy video codecs such as H.264/AVC [55] and
H.265/HEVC [52]. H.264/AVC and H.265/HEVC consist of
following steps:
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Ground-truth RGB Ground-truth RAW UPI RAW [9] CycleISP RAW [61] Our RAW

Fig. 6. The qualitative comparison among UPI [9], CycleISP [61] and our method. UPI and CyleISP synthesize RAW data from 8-bit compressed
RGB, which is inevitable to suffer from the information loss of traditional ISP. Unlike theirs, our model forms a RAW-RGB-RAW cycle and is inherently
reversible to recover the realistic RAW image. The GT RAW image is visualized through bilinear demosaicing, and other RAW images are visualized
through error maps. This figure is best viewed in the electronic version.

• I, P, B frame selection,
• inter-frame prediction,
• intra-frame prediction,
• DCT transformation and other transformations,
• quantization, and
• entropy encoding.

To account for the above key steps of video codecs,
we aim to design a compression-quality-aware simulator.
Specifically, we divide our simulator into inter-frame sim-
ulation and intra-frame simulation. We note that the frame
selection of I, P, and B frame depends on the frame content
and the video codecs design. To simplify this process, we
perform randomized alternation between the inter-frame
and intra-frame simulation. For intra-frame simulation, we
mainly follow our design of a JPEG simulator and adjust
the compression ratio via DCT tables. For inter-frame sim-
ulation, we use random motion jittering to simulate the
optical flow estimation process. For each macroblock in
an image, we sample a random dominant motion from
[0,M ], where M is a hyperparameter that represents the
maximum motion. We then do some random jittering based
on the random dominant motion between [0, 0.1]. We warp
the macroblock to obtain the new ones that simulate the
warped ones in intra-frame prediction. At last, we conduct
compression on the estimated residual.

While our simulation is similar to the CNS module pro-
posed in Hu et al. [28], we highlight the difference between
our method and theirs.

• Instead of adopting the same compression simulator
for all compression ratios, we adjust the simulator to
adapt to different compression ratios by varying the
DCT table.

• We adopt dominant motion to simulate the optical
flow estimation process, which shows performance
improvement over simulating the pixel-wise move-
ment in CNS [28].

We quantatitively compare our method with CNS in Table 2.

5 EXPERIMENTS

5.1 Datasets
RAW Image Datasets. We collect the Canon EOS 5D subset
(777 image pairs) and the Nikon D700 subset (590 image
pairs) from the MIT-Adobe FiveK dataset [11] as the train-
ing and test data. We train our model for each camera
separately. We randomly split each of the two sets (Canon,
Nikon) into training and test sets with a ratio of 85:15. We
use the LibRaw library to process the RAW images to render
ground-truth sRGB images. In general, LibRaw conducts
most representative ISP steps in modern digital cameras
to render sRGB images, including color space conversion,
demosaicing, denoising, white balancing, exposure compen-
sation, gamma compression, and global tone mapping.

RAW Video Datasets. Since there is no public large-
scale RAW video dataset, we contribute a new dataset with
160 video frame sequences from different scenes captured
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Fig. 7. Comparison with baselines. Invertible Grayscale [57] fails at learning a good balance between RGB rendering and RAW recovering, which
results in relatively poor performance in both RGB and RAW images. The U-net [13] can render comparable RGB performance with ours but perform
worse at RAW recovering. Our invertible ISP can both render visually pleasing RGB images and reconstruct realistic RAW data. The GT RAW is
visualized through bilinear demosaicing, and other RAW images are visualized through error maps. This figure is best viewed in the electronic
version.
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Fig. 8. Performance in low-light environments. Our approach also performs well in low-light environments.
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Fig. 9. Set different JPEG quality values for both the preprocess of the datasets and the training process. The JPEG quality of the ground-truth RGB
image is 90. Low JPEG quality value will lead to unavoidable noise and loss of details, while a higher value can better the results for RAW and RGB
images. This figure is best viewed in the electronic version.
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Fig. 10. Comparison of different loss functions, including L1 loss, L2 loss, Perceptual loss [62] and SSIM loss [54]. L1 loss has a steady performance
with a delicate balance. L2 loss has a higher PSNR value for RAW data but worse for RGB results. Perceptual loss [62] and SSIM loss [54] are both
underperform L1 loss for the image outputs. And they two are not applicable for the RAW data reconstruction in the training models. So we choose
L1 loss as our preferred loss function. This figure is best viewed in the electronic version.

TABLE 1
Quantitative evaluation among our model and baselines. Various perceptual metrics show that our proposed ISP model outperforms all the

baselines. Our method with JPEG simulation using proposed Fourier quantization outperforms the other two alternative models.

NIKON D700 Canon EOS 5D

Method RGB RAW RGB RAW

PSNR SSIM PSNR PSNR SSIM PSNR

UPI [9] - - 30.12 - - 26.31

CycleISP [61] - - 30.19 - - 34.48

InvGrayscale [57] 24.13 0.8258 33.28 28.22 0.8714 38.00

U-net [13] 36.48 0.9342 41.17 33.44 0.8893 41.14

Ours (w/o JPEG simulation) 37.44 0.9309 44.19 33.45 0.8923 45.73

Ours (JPEG with DSQ [23]) 37.44 0.9467 45.25 33.15 0.8946 48.22

Ours (JPEG with Fourier) 37.47 0.9473 45.23 33.61 0.9007 48.57

TABLE 2
Quantitative evaluation among our model and baselines. Various perceptual metrics show that our proposed ISP model outperforms all the

baselines. Our method with compression quality-aware simulation outperforms the existing video compression simulation method. Average PSNR
is calculated with the average of RGB PSNR and RAW PSNR.

CRF 23 CRF 35 CRF 41

Method RGB RAW Average RGB RAW Average RGB RAW Average

PSNR SSIM PSNR PSNR PSNR SSIM PSNR PSNR PSNR SSIM PSNR PSNR

Image flow (w/ JPEG simulation) 35.62 0.842 40.76 38.19 31.97 0.761 34.12 33.05 29.98 0.700 25.63 27.81

Image flow (w/ cns) 35.33 0.839 41.22 38.28 32.22 0.756 36.51 34.37 30.01 0.702 32.64 31.33

Image flow (w/ our simulation) 35.44 0.841 41.01 38.23 32.52 0.762 36.69 34.61 30.33 0.703 32.76 31.55

Video flow (w/o simulation) 35.71 0.834 38.97 37.34 32.53 0.755 34.42 33.48 30.05 0.699 28.51 29.28

Video flow (w/ cns) 35.81 0.838 41.78 38.80 32.51 0.760 36.94 34.73 30.18 0.698 32.99 31.59

Video flow (w/ our simulation) 35.74 0.837 41.50 38.62 32.70 0.763 36.79 34.75 30.23 0.701 33.40 31.82

by Sony RX 100M VI cameras. Each video contains 57-114
frames with the resolution of 2748 × 1936, and is captured
with 24fps in a burst mode. During training, we randomly
split the video datasets into a training set and a test set with
a ratio of 87.5:12.5 (140 videos for training and 20 videos
for testing). We use LibRaw Library to process these video

frames to render sRGB video frames.

5.2 Implementation details
We utilize random crop, random rotation, and random flip
as data augmentation to train our model. We preprocess
the raw data using the white balance parameters provided
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Fig. 11. Comparison between image flow and video flow methods.
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Fig. 12. Our model can enable image retouching [29] and HDR recon-
struction [42] applications. Note that we use the pretrained model of [29]
for retouching.

by camera metadata since estimating white balance directly
from raw images is a research topic in itself [3]. To test the
effectiveness of our JPEG simulator, we store the ground-
truth RGB image into JPEG format, whose quality is set
to 90 (Q=90, most representative JPEG quality in modern
digital cameras). We also conduct experiments without pre-
processing white balance and with another JPEG quality,
whose quantitative results are accessible in the supple-
ment. To test the effectiveness of our video compression
simulator, we store the ground-truth RGB video into MP4
format, with the compression codec as H.264/AVC [55] and
H.265/HEVC [52].

At test time, we first conduct the forward pass of our
network to render RGB images and save them into JPEG
images or MP4 videos. Then we load the saved JPEG images
or MP4 videos and conduct the inverse step to recover RAW
images.

5.3 Evaluation of invertible ISP on images
5.3.1 Baselines and controlled experiments
UPI. Brooks et al. [9] unprocess the sRGB images to synthe-
size high-quality RAW images for learned RAW denoising.
They adopt camera priors to inverse ISP step-by-step, such
as digital gain, tone mapping curves, white balance, and
color correction matrices [9]. Since the metadata such as
color correction matrix, white balance, and digital gain are
camera dependent, we modified these parameters in their
method to fit our dataset. We use their described method to
estimate metadata for our datasets.

CycleISP. We select the state-of-the-art learning-based
RAW synthesizing method, CycleISP [61], as another base-
line for synthetic RAW direction. Note that their model has
access to RGB images at test time, and thus we only need
to compare with their synthesized RAW images. We di-
rectly utilize their pretrained model since their framework is
trained on the MIT-Adobe FiveK dataset, and their proposed
color attention unit can be generalized to different cameras.

U-net. U-net is a representative architecture for ISP in
recent year publications [13], [63], thus we implement a
encoder-decoder baseline using U-net [49]. Both the encoder

and decoder are consist of an independent U-net. Same
as [13], [63], we pack the Bayer pattern RAW into R-G-G-
B channels for encoder input and utilize the depth-to-space
operation to restore the RGB resolution. We utilize the same
data augmentation strategies as our InvISP. We jointly train
the encoder and decoder of our U-net baseline using L1 loss
from scratch on all our datasets.

Invertible Grayscale. Invertible Grayscale [57] is a gen-
eral framework to learn the forward and inverse map-
ping between two space, such as color-image space and
grayscale-image space. The encoder of Invertible Grayscale
takes a 3-channel RGB image as input and processes it to
a single-channel grayscale image. The decoder recovers the
original sRGB image with the same color from the grayscale
image. Similar to their settings, we change the input from
sRGB image to RAW data after bilinear demosaicing and set
the output of the encoder to the 3-channel RGB image. Since
the lightness loss function is not suitable for our tasks, we
remove it for our experiments.

Ablation studies In the method for RAW data recon-
struction, we analyze the parameters of block numbers,
JPEG qualities, and loss functions which may affect the per-
formance of our proposed model. In Table 3, we evaluate the
performance of both subsets from the dataset [11] respec-
tively under different parameter settings. We set different
block numbers to the invertible networks, and use different
JPEG qualities as parameters on the preprocessing of the
dataset. In addition, we compare the performance adopting
L1 loss with experiments using other loss functions, includ-
ing L2 loss, perceptual loss [62] and SSIM loss [54].

5.3.2 Results
Quantitative results To quantitatively evaluate our method,
we use PSNR and SSIM for rendered RGB images, and
PSNR for recovered RAW images. The comparison with
baselines is reported in Table 1. Compared with the RAW
synthesizing method UPI and CycleISP, our model can
recover more accurate RAW data, which is proved by more
than 13 dB improvement of PSNR. The results are not
surprising because lots of information lost in the ISP is
quite hard to invert, which results in poor performance
for synthetic RAW reconstruction methods. However, our
InvISP can jointly optimize RGB rendering and RAW recov-
ering process and thus is better to handle the information
lost in quantization, JPEG compression, and saturated value
clipping problem in ISP. For the Invertible Grayscale and
the U-net baselines, the results indicate that our method
contributes a better ISP as well as a stronger model for
recovering RAW data. This is because using two separate
networks for ISP and inverse ISP will cause the error
accumulation problem, which further degrades the RAW
reconstruction performance. Our methods take the inherent
reversibility of invertible neural networks thus can recover
higher-quality RAW images than baselines.

Qualitative results We show qualitative comparisons
against baseline methods in Figure 6 and Figure 7. We
also show the performance of our method under low-light
environment in Figure 8. In Figure 6, the synthetic RAW
by CycleISP and UPI differs a lot from ground truth RAW
images, especially at over-exposed regions, which indicates
that their model performs poorly to handle the information
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TABLE 3
Ablation studies in our method for RAW image data reconstruction. The performance reaches a peak when a block number is a certain number.

We also find that the increment of JPEG quality causes improved outputs. L1 loss outperforms all other loss functions by comparing PSNR values
of RGB images; however, L2 loss has a better performance for RAW data reconstruction.

Block NIKON D700 Canon EOS 5D

Number PSNR RGB SSIM RGB PSNR RAW PSNR RGB SSIM RGB PSNR RAW

3 36.16 0.9377 45.06 36.35 0.9239 45.63

5 36.71 0.9407 44.83 36.88 0.9243 45.53

7 36.83 0.9476 45.17 37.10 0.9246 46.03

9 37.17 0.9450 45.15 36.55 0.9205 46.00

11 36.87 0.9482 44.51 35.84 0.9215 46.58

JPEG NIKON D700 Canon EOS 5D

Quality PSNR RGB SSIM RGB PSNR RAW PSNR RGB SSIM RGB PSNR RAW

30 34.92 0.9170 41.85 33.85 0.8854 39.92

50 35.12 0.9362 43.02 35.05 0.9089 43.05

70 35.65 0.9483 44.35 36.57 0.9266 43.86

90 36.76 0.9476 45.09 36.01 0.9241 45.86

Loss NIKON D700 Canon EOS 5D

Function PSNR RGB SSIM RGB PSNR RAW PSNR RGB SSIM RGB PSNR RAW

L1 36.93 0.9483 44.90 36.54 0.9256 46.49

L2 35.55 0.9385 46.01 36.23 0.9243 46.62

Perceptual 35.12 0.9306 44.26 35.39 0.9205 44.85

SSIM 35.44 0.9486 44.66 36.02 0.9297 44.74

loss of ISP. Our model, however, can recover the RAW
information much better than synthetic RAW methods, even
at challenging highlight pixels, which raises the potential
for prospective photo editing tasks. In Figure 7, Invertible
Grayscale fails to pursue a good balance between RGB
rendering and RAW reconstruction. Our naive U-net base-
line can achieve comparable performance in terms of RGB
rendering but not perform well at RAW recovering. Our
method reconstructs higher-quality RAW images on edges
and over-exposed areas without sacrificing the RGB render-
ing performance. In Figure 8, our method can recover high-
quality (PSNR over 39dB) RAW images and visually similar
RGB images with the ground-truth, under the challenging
low-light environment. This also opens the opportunities to
research on low-light image enhancement with RAW sensor
data [13].

5.4 Evaluation of invertible ISP on videos
5.4.1 Baselines
The effectiveness of our novel normalizing flow frame-
work for videos. We compare our proposed video flow with
several alternatives.

(1) Image flow without compression simulator. We
utilize per-frame normalizing flow as in invertible image
ISP, without any compression simulation. We denote this
experiment as image flow (w/o simulation).
(2) Image flow with jpeg simulator. Still based on per-frame
normalizing flow, we utilize jpeg compression simulator
to account for the information loss due to compression,
denoted as image flow (w/ JPEG).

(3) Video flow without compression simulator. We adopt our
proposed video normalizing flow without any compression
simulator to verify its effectiveness. We denote it as video
flow (w/o simulation).
(4) Video flow with our video simulator. We use our
proposed video normalizing flow with our designed video
compression simulator to train the network. This is the full
model of our framework, denoted as video flow (w/ our
simulation).

Comparison with alternative compression simulators.
We compare our proposed video compression simulator
with two alternative methods.
(1) Video flow with jpeg compression simulator. We utilize
the jpeg simulator for our video flow framework, denoted
as video flow (w/ JPEG).
(2) Video flow with CNS simulator [28]. We utilize the
video compression simulator proposed in [28] to verify the
effectiveness of our proposed compression simulator.
(3) Image flow with video simulator. We use our proposed
video compression simulator to make the network robust to
video compression codecs. We denote it as image flow (w/
our simulation).

5.4.2 Qualitative and quantitative results

To quantitatively evaluate our method, we use PSNR and
SSIM for rendered RGB images, and PSNR for recovered
RAW images. The comparison with baselines is reported in
Table 1. Compared with the RAW synthesizing method UPI
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TABLE 4
The result of our CNS module on H.265/HEVC video compressor comparing to naive CNS. Our method is also robust to H.265/HEVC.

CRF 23 CRF 35 CRF 41

Method RGB RAW RGB RAW RGB RAW

PSNR SSIM PSNR PSNR SSIM PSNR PSNR SSIM PSNR

Naive CNS 35.15 0.824 41.71 32.21 0.740 38.44 30.11 0.698 32.74

Our simulation 35.21 0.826 41.81 32.21 0.740 38.51 30.13 0.704 33.27

and CycleISP, our model can recover more accurate RAW
data, which is proved by more than 13 dB improvement
of PSNR. The results are not surprising because lots of
information lost in the ISP is quite hard to invert, which
results in poor performance for synthetic RAW reconstruc-
tion methods. However, our InvISP can jointly optimize
RGB rendering and RAW recovering process and thus is
better to handle the information lost in quantization, JPEG
compression, and saturated value clipping problem in ISP.
For the Invertible Grayscale and the U-net baselines, the
results indicate that our method contributes a better ISP as
well as a stronger model for recovering RAW data. This is
because using two separate networks for ISP and inverse
ISP will cause the error accumulation problem, which fur-
ther degrades the RAW reconstruction performance. Our
methods take the inherent reversibility of invertible neural
networks thus can recover higher-quality RAW images than
baselines.

5.4.3 Generalization to H.265/HEVC

Since H.265/HEVC is the state-of-the-art video compres-
sion method, we also demonstrate the robustness of our
CNS module on H.265/HEVC. As illustrated in Table 4,
our method can be adapted to H.265/HEVC, and have
better reconstruction RAW quality than naive CNS on both
CRF 23 and 35. Note that although our CNS module is
designed based on H.264/AVC, H.265/HEVC shares the
same compression pipeline with H.264/AVC and modified
the method used in intra-frame prediction, inter-frame pre-
diction, macro block dividing and DCT [32]. These modified
methods only improve the computing efficiency and the
performance of each step. Since the key idea of our CNS
module is to simulate the key step of video compression
pipeline, our method is robust to H.264/HEVC video com-
pressor.

5.4.4 Ablation studies

We perform ablation studies on the number of pixel shift
in our CNS module. The results in Table 5 illustrate that
shift one pixel have the best RGB and reconstruction RAW
quality. Therefore, we empirically set the number of pixel
shift to one. Note that the best number of pixel shift may
be variant for different RAW video dataset. Since our RAW
video dataset is captured in burst mode with 15 fps with
very slow camera movement, the motion between two ad-
jacent frames are relatively small. Therefore, only shift one
pixel can produce the best result. However, for the dataset
with large movement, shift more pixel may produce better
results.

6 APPLICATIONS

6.1 RAW data compression
One important application of our framework is RAW data
compression for cameras. Traditionally, users need to ex-
plicitly store RAW data for further applications. Using our
technique, however, only JPEG images need to be stored,
and users can reconstruct the corresponding RAW data
from JPEG images. To evaluate the reduced file size, we
calculate the compression ratio and the bit per pixel (BPP).
The compression ratio Cratio [45] is calculated by

Cratio =
Uncompressed size

Compressed size
=

BBMP

BJPEG
, (11)

where BBMP is the file size of RAW data in BMP format
and BJPEG is the file size of rendered sRGB image in JPEG
format. Note that BBMP is calculated by [8]:

BBMP = 54 +
H ×W × b

8
, (12)

where H , W and b are the height, width and the bit depth
of the RAW data. We further compare our compression
effectiveness with Adobe lossy DNG. As shown in Table
6, the file size is highly reduced, even compared with lossy
DNG.

6.2 Image retouching
Professional photographers choose to retouch images from
RAW data for better visual quality. We demonstrate that
our recovered RAW can be directly taken as input for
high-quality image retouching. We use an automatic deep
learning based image retouching method Exposure [29] as
an example. We preprocess the recovered RAW and ground
truth RAW through demosaicing and white balancing, fol-
lowing the setting of the paper [29]. We directly utilize their
pretrained model that is also trained on the MIT-Adobe
FiveK dataset. As illustrated in Figure 12, our reconstructed
RAW data has an indistinguishable visual quality to the
RAW data captured by the camera.

6.3 HDR reconstruction and tone manipulation
Inferring a high dynamic range image from a single low
dynamic range input is challenging [17], [18] since the
information lost in saturated and under-exposed regions
are hard to invert accurately. Our invertible ISP framework
fundamentally alleviates these difficulties and thus enables
single image HDR reconstruction. Further, the recovered
HDR image can be tone mapped to display much more
details than the original RGB input. In Figure 12, we use [42]
as tone mapper to demonstrate the potential of our method.
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TABLE 5
Ablation studies on the number of pixel shift in our simulation. Shifting 1 pixel gives the best result.

CRF 23 CRF 35 CRF 41

Method RGB RAW RGB RAW RGB RAW

PSNR SSIM PSNR PSNR SSIM PSNR PSNR SSIM PSNR

Ours (shift 1 pixel) 35.43 0.821 42.22 32.21 0.740 38.44 30.13 0.704 33.27

Ours (shift 2 pixels) 35.48 0.823 42.15 35.33 0.740 38.41 30.01 0.703 33.24

Ours (shift 3 pixels) 35.50 0.825 42.07 32.34 0.739 37.85 30.12 0.705 32.97

Ours (shift 5 pixels) 35.18 0.823 41.99 32.15 0.738 37.73 29.81 0.699 32.81

Ours shift 8 pixels 35.15 0.826 41.95 32.14 0.739 37.88 29.74 0.699 32.74

TABLE 6
Comparison of the compression ratio of the file size and bit per pixel

(BPP) between our method and lossy DNG. The file size is significantly
reduced by our framework.

Compression ratio ↑ BPP ↓
Dataset Lossy DNG Ours Lossy DNG Ours
NIKON D700 1.61 34.98 8.73 0.4655
Canon EOS 5D 1.52 27.37 6.56 0.5237

7 CONCLUSION

We have proposed an end-to-end invertible image signal
processing (InvISP) framework to generate visually pleasing
RGB images and recover nearly perfect quality RAW data.
We leverage the idea from invertible neural networks to
design our invertible structure and integrate a differentiable
JPEG simulator to enhance the network stability to JPEG
compression. We use LibRaw to simulate ground-truth ISP
on the MIT-Adobe FiveK dataset. We evaluate our method
through comparisons with other frameworks and RAW data
synthesis methods. We also demonstrate that our frame-
work enables RAW data compression, image retouching,
and HDR reconstruction tasks. We extend our invertible
ISP to videos and show the first approach for RAW video
reconstruction from compressed video files. Our proposed
video normalizing flow method and video compression
simulator can achieve state-of-the-art performance on RGB
video rendering and RAW video reconstruction. We hope
our method can inspire further research on ISP design and
RAW image/video reconstruction.

Limitations While our approach can achieve state-of-
the-art performance on raw image and video reconstruction,
the computational cost of the our method is larger than the
traditional ISP. This is mainly due to the inefficient computa-
tion of normalization flow method. Thus, our method is not
suitable for real-time applications on low-end computation
devices. We leave improving the computational efficiency as
future work.
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