
AWell-aligned Dataset for Learning Image Signal Processing on
Smartphones from a High-end Camera
Yazhou Xing

HKUST
Changlin Li

HKUST

Xuaner Zhang
Adobe Inc.

Qifeng Chen
HKUST

iP
ho

ne
6S

IS
P

iPhone 6S ISP iPhone 6S ISP OursOurs

iPhone 6S ISP iPhone 6S ISP OursOursiPhone 6S ISP iPhone 6S ISP OursOurs

O
ur
s

iPhone 6S ISP iPhone 6S ISP OursOurs

iPhone 6S ISP iPhone 6S ISP OursOursiPhone 6S ISP iPhone 6S ISP OursOurs
Figure 1: Reconstructed RGB images using our proposed model. Compared with iPhone 6S ISP, our result can better utilize the
recorded information in raw data and reconstruct visually appealing results even under backlit scenes.
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1 INTRODUCTION
Not every camera is equipped with an excellent image signal pro-
cessing (ISP) pipeline that converts raw sensor data into color im-
ages. The main objective of an ISP is to produce a visually appealing
image that is also faithful to the scene being captured. Conven-
tional ISP is composed of a sequence of modules including white
balance, demosaicking, denoising, tone mapping, and so on. It is
labor-intensive and challenging to design an ISP pipeline with many
independent modules, and thus the ISP on most mobile phones is
sub-optimal, even for the highly-rated ones such as iPhone. In this
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paper, we present a novel learning-based model that replaces built-
in ISP and synthesizes images that match the image quality from
high-end professional cameras. Our approach does not rely on the
sub-optimal built-in ISP at all but instead utilizes a fully convo-
lutional network with content-aware conditional convolutions to
act as ISP. To train the deep learning model, we collect a large-
scale dataset with raw and RGB data pairs captured by two popular
smartphones and one high-end camera. Our dataset complements
the existing Raw-to-RGB ISP dataset [Ignatov et al. 2020] with with
more types of smartphone images. Our model takes the raw sensor
data from a smartphone as input and generates an RGB image that
is optimized to reach the image quality coming from the high-end
camera ISP. Experimental results show that our presented model
produces perceptually better images than the popular smartphones
do when using the same sensor data.

2 OUR ALIGNED DATASET
A big challenge of training a data-driven ISPmodel is the lack of raw
sensor data and desired high-quality images as ground truth. We
collect a dataset that contains raw sensor data captured by smart-
phones with small sensors, and RGB images as the target image
from a high-end camera (Nikon Z6) with high-quality in-camera
ISP. Image alignment is challenging when using data pairs captured
from different devices for training. We find only global alignment
like homography transformation can hardly achieve pixel-wise
accuracy thus we integrate local alignment to achieve sub-pixel ac-
curacy. First, we estimate a homography transformation using SIFT
features. Because of different FOV and the constraint of homog-
raphy transformation only handling co-planar scenes, this initial
alignment is not pixel-wise accurate. We use it as initialization for
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Figure 2: We compare our results with state-of-the-art image enhancement models as well as in-camera ISP.

iPhone 6S Nikon Z6 Camera Rig

Figure 3: Sample data triplet and the camera rig used to cap-
ture our dataset.
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Figure 4: Misalignment analysis. In our dataset, most patches
have misalignment to 0.4 ∼ 0.7 pixels. The same misalign-
ment analysis on different illuminations is consistent with
overall misalignment distribution, as seen in (b).

subsequent patch alignment steps. Second, we split Nikon RGB into
non-overlapping patches and search for the best matching patch
in smartphone RGB, using the normalized cross-correlation (NCC)
index as the matching metric. For additional dataset filtering, we
apply the PWC-Net to estimate the average pixel flow shift to filter
out poorly-aligned patches. We reject patches with misalignment
greater than 1.2 pixels. The remaining image patches contain an
average pixel misalignment of 0.6 pixels. A detailed analysis is il-
lustrated in Figure 4. In total, we obtain 333K image patch pairs
from 1270 iPhone-Z6 pairs and 1154 Mi-Z6 pairs for training and
testing.1

3 METHOD
Given a raw image𝑋 captured by a small sensor camera, our goal is
to render a high-quality RGB image 𝑌 . The high dynamic range of
raw sensor images imposes a great challenge using a conventional
CNN architecture that relies on spatially invariant convolutions,
which are considered antithetical to localize edge discontinuities.
Thus, directly applying standard convolution can cause apparent
artifacts such as halos, which has been identified in previous non-
learning-based image filtering methods [Guarnieri et al. 2011; Paris
1Our dataset can be downloaded from here.

et al. 2011]. We propose a novel edge-aware conditional convolu-
tional network architecture based on the kernel prediction method
[Bako et al. 2017].

Given an 𝑛-pixel input image 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑛), 𝑋𝑖 ∈ R𝑐 , the
output𝑌 = (𝑌1, 𝑌2, . . . , 𝑌𝑛), 𝑌𝑖 ∈ R𝑐

′
can be obtained by convolution

operation with per-pixel kernel𝑊 :

𝑌𝑖 =
∑︁
𝑗 ∈𝛿𝑖

𝑊 𝑖 [𝑖 − 𝑗]𝑋 𝑗 + 𝑏, (1)

where𝑊 𝑖 denotes the conditional convolution kernel at position 𝑖 ,
𝛿𝑖 is the neighbourhood window centered at position 𝑖 . Note that
we formulate images as one-dimension vectors for notation clarity.
In general,𝑊 𝑖 should be a function of input content:

𝑊 𝑖 = 𝑓 (𝑋, 𝛿𝑖 ). (2)

We leverage the approximation power of neural networks to esti-
mate the function 𝑓 . We predict these conditional kernels as the
output of the network and then convolve the predicted kernels with
input features.

4 EXPERIMENT RESULTS
We present preliminary results in Figures 1 and 2. Under good
lighting conditions, our reconstructed results have more vivid col-
ors and can better handle noise and preserve fine details without
generating artifacts. Under backlit scenes, our method utilizes the
dynamic range of raw sensor data effectively such that both over-
and under-exposure regions can be rendered clearly.
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